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Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct 
are numerically investigated with the author's anisotropic low-Reynolds-number k-~ 
turbulence model. Special attention has been given to the regions close to the wall and 
the corner, which are known to influence the characteristics of secondary flow a great 
deal. Hence, instead of the common wall function approach, the no-slip boundary 
condition at the wall is directly used. Velocity and temperature profiles are predicted for 
fully developed turbulent flows with constant wall temperature. The predicted variations 
of both local wall shear stress and local wall heat flux are shown to be in close agreement 
with available experimental data. The present paper also presents the budget of turbulent 
kinetic energy equation and the systematic evaluation for existing wall function forms. 
The commonly adopted wall function forms that are valid for two-dimensional flows are 
found to be inadequate for three-dimensional turbulent flows in a square duct. 
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I n t r o d u c t i o n  

Turbulent flows commonly encountered in engineering practice 
occur in straight noncircular ducts; examples include heat 
exchangers, nuclear reactors, turbomachinery, and air- 
conditioning systems. These flows are characterized by the 
occurrence of secondary flows in the cross-sectional pl~,:e, 
which results from the anisotropy of Reynolds normal stresses 
in the cross-sectional plane induced by the three-dimensionality 
of the flow. 1'2 Although the magnitude of turbulence-driven 
secondary motion is only of the order of 2-3 percent of the 
streamwise mean velocity, this motion causes the streamwise 
mean velocity and temperature fields to be distorted consider- 
ably toward the corners and thus can have important conse- 
quences. For example, both the local wall shear stress and the 
local wall heat flux along the duct periphery are dominated by 
the presence of this secondary flow, which causes these variables 
to increase initially toward the corner. This behavior is of great 
importance for phenomena such as sediment transport and 
erosion problems. Therefore, it is important, from a design 
standpoint, to be able to predict local fluid flow and heat 
transfer behavior accurately in straight noncircular ducts. 

A considerable number of experimental investigations have 
primarily been concerned with the influence of duct geometry 
on the overall behavior of skin friction and heat transfer rate. 
The earlier experiments indicated that empirical equations for 
these quantities could be closely related to correlations derived 
for turbulent flow in circular pipes (secondary flows do not 
exist there) through the concept of a hydraulic diameter. More 
extensive later studies have shown, however, that flow and heat 
transfer behavior are considerably geometry dependent, and 
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hence the duct geometry needs to be considered in detail. 3''~ In 
addition, if local values of the wall shear stress and/or wall 
heat flux are used in the correlation for each position around 
the periphery, the frequently adopted assumption that the 
velocity and temperature profiles can be described by the usual 
inner logarithmic law of the wall developed for two-dimensional 
(2-D) flows also lacks experimental verification, particularly in 
both the corner and wall regions where there are still little 
available experimental data due to the difficulty of experimental 
measurement. 

Since the secondary flow in a straight noncircular duct is 
caused by turbulence as discussed previously, this particular 
flow situation provides a natural vehicle for examining the 
validity of existing turbulence models. Thus, a theoretical 
analysis of the problem should take account of the secondary 
motions, for example, in order to calculate the behavior of skin 
friction and heat transfer rate accurately. In an early theoretical 
analysis, however, no mechanism for the development of 
secondary flow was taken into account, 5 and consequently both 
predicted local wall shear stress and wall heat flux distributions 
did not show experimentally observed behavior. The widely 
used (isotropic) k-e model also has no built-in mechanism for 
the development of secondary flow due to its inherent isotropic 
characteristics, i.e., the stress and mean strain fields are co- 
aligned. For these reasons, most of the turbulence models 
developed for predicting these flows are essentially based on 
the Reynolds stress models, although they show considerable 
variation in the style of approach ; examples include equilibrium 
models (e.g., a three-dimensional [3-D] length scale model by 
Gessner and Emery6), one-equation transport models, 7 two- 
equation transport models, s and algebraic stress models. 9-~1 
All of these models are, however, known to show quantitatively 
somewhat poor predictions of local wall shear stress and local 
wall heat flux distributions, although they predict qualitatively 
the correct trends as a whole. 6 It may be first anticipated that 
the discrepancy between predictions and experiments is caused 
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by deficiencies in the models, since all these models are 
simplified from the original forms of the Reynolds stress models 
with several assumptions that are questionable. This aspect has 
recently been systematically investigated by Demuren and 
Rodi ~ t and Myong and Kobayashi. ~2 

Another cause for the discrepancies between predictions and 
experiment seems to lie in the wall functions specified improperly 
by previous models. It is clear that this approach is less than 
desirable from the standpoint of numerical prediction, since 
both regions close to the wall and the corner are known to 
influence the characteristics of secondary flow a great deal. 
However, all of the previous models have, in fact, used the wall 
function approach as a wall boundary condition, partly because 
the near-wall modeling of Reynolds stress models is still far 
from complete. Up to the present, several forms of wall function 
have been proposed and used in the previous models, but their 
validity has not been verified, particularly for the near-corner 
region. Therefore, if predictions based on wall function approach 
are made, it is difficult to know whether discrepancies between 
predictions and experiment in both the near-wall and the near- 
corner regions are due to improperly specified wall functions 
or to deficiencies in the model itself. At the present time, no 
systematic evaluation for these wall function forms has appeared 
in the open literature. It is one main intent of this paper to 
present this evaluation. 

Recently, the author 13-15 has proposed an anisotropic low- 
Reynolds-number k-e turbulence model that is valid right up 
to the wall. This is just an extended form of its (isotropic) 
low-Reynolds-number k-e model 13"16 but broadens the range 
of applicability while maintaining most of the popular features 
of the latter. This model has already been found capable of 
predicting the anisotropic normal Reynolds stresses up to the 
wall, with the correct wall-limiting behavior, and also proven 
to perform satisfactorily in several flow situations, including 
turbulent pipe and channel flows, 2-D boundary layer flows 
with and without pressure gradients, and even for developing 
3-D turbulent flows in a square duct. 13"15 In addition, for 
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developing 3-D turbulent flows in a square duct, it is found 
that the performance of the present model, including the 
anisotropic normal Reynolds stresses and distributions of U, 
k, and ~ ,  is by no means inferior to that of the previous 
higher-order models (e.g., Demuren and Rodi 11 ).12 

In the present paper, the author's anisotropic low-Reynolds- 
number k-e model is used to predict 3-D fully developed 
turbulent fluid flow and heat transfer in a square duct as the 
simplest geometry in which secondary flows arise. We will not 
use the wall function approach but will use the no-slip condition 
at the wall, since the turbulence structure in regions close to 
the wall and the comer are known to govern the secondary 
flow generation mechanism, and also the evaluation of wall 
function forms is one main intent of the present paper. The 
resulting set of equations is simplified only by the boundary- 
layer approximations and solved with a forward marching 
numerical procedure for 3-D shear layers until fully developed 
flow is attained. 

It should be noted that the present paper goes beyorld the 
experimental investigation by paying particular attention to the 
predictions in regions close to the corner and the wall, where 
little experimental data have been reported due to the difficulty 
of experimental measurement. Since the turbulence structure in 
regions close to the wall and the corner are known to govern the 
secondary flow generation mechanism as mentioned previously, 
it is desirable to obtain information on these regions. Also, the 
present predictions provide a body of material that future 
modelers and experimenters may wish to compare with their 
own results. 

M a t h e m a t i c a l  m o d e l  

Reynolds averaged Navier-Stokes equat ions 

The Reynolds averaged Navier-Stokes equations governing the 
distribution of the mean velocity and temperature components 

N o t a t i o n  

a 
a '  

C1,  C2,  C3 
Cs 
C~, C~2, C~ 
D 
f~,f2 
h 
k 

N u  
P 

P r  
Pr, 
~,~ 
Re 
R~ 
T 
T + 
t 
I/2, I) 2, W 2 

I//),/dW, t~W 

/d r 

Duct half width (Figure 1 ) 
Diagonal half width (Figure 1 ) 
Turbulence model constants for anisotropy 
Friction factor ( C j, = 2~,~/ (pU~ ) ) 
Turbulence model constants 
Hydraulic diameter (Figure 1 ) 
Modification functions in k-e model 
Heat transfer coefficient 
Thermal conductivity or turbulent kinetic 
energy 
Nusselt number (Nu = hD/k)  
Mean static pressure or turbulent kinetic 
energy production 
Prandtl number 
Turbulent Prandtl number 
Local and average wall heat flux, respectively 
Reynolds number (Re -= UbD/v) 
Turbulent Reynolds number (R, = k ' / (ve))  
Mean temperature 
Dimensionless temperature 
Fluctuating component of temperature 
Reynolds normal stress components 
Reynolds shear stress components 
Friction velocity (u, = ~ )  

U + 
u , v , w  
V' 
x, y, z 
y' 

y + ,  Z + 

Dimensionless velocity ( U + =- U /ur) 
Mean velocity components (Figure 1 ) 
Mean velocity component along diagonal 
Cartesian coordinates (Figure 1 ) 
Cartesian coordinate along diagonal (Figure 
1) 
Dimensionless wall coordinate ( y ÷ =- ur y /v )  

Greek symbols 
ct Thermal diffusivity 
6 o Kronecker delta 
x von Karman's constant 
v Kinematic viscosity 
v, Eddy diffusivity of momentum 
p Density 
ak, tr~ Turbulence model constants for diffusion ofk 

and e 
e Dissipation rate of k 
z,, ~,~ Local and average wall shear stress, 

respectively 

Subscripts 
b Bulk-mean 
c Center 
w Wall 
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in a straight duct may be written as follows: 

Continuity equation : 

OU ~V ?W 
- - +  + .. . . . . .  0 (1) 
~x ~y gz 

Streamwise (or longitudinal) momentum equation: 

U c?U ~U OU - - + V  + W - -  
c~x ~3y ~z 

l dP Our ~uw ,~ft3zU + ~2U~ 
. . . . . . .  + (2) p dx ay & V\oy" az ~ ] 

Momentum equations governing the secondary velocities V and 
W: 

t3V t3V dV 
U + V - - + W  

~x ~y gz 

10P 8v 2 c3vw v(OZV O~V "] 
- ~ + ( 3 )  

p Oy #y Oz \ 0y 2 ~3Z2 ] 

~?W- ~W ~?V¢- 
-t- V - - + W - -  

Ox Oy ~z 
U 

l e~, ~vw ~w2 ~.~;~2w + ~2w) 
- + az ~ ] o ~z ~ ~z ~.~ 

(4) 

Thermal energy equation: 

c?T OT dT 
U + V  .... + W  

~x Oy 6z 

Ovt ~wt [ ~ T  + ~ T )  
- + ~ Oz 2 ] 

~ 
ay ~z ~.~ 

The coordinate system and pertinent variables used in the 
present paper are shown in Figure 1. It is noted that, using the 
boundary-layer approximations, the streamwise momentum 
and heat fluxes have been neglected, and the pressure gradient 
OP/Ox, originally appearing in Equation 2, has been replaced by 
the cross-sectional average pressure gradient dP/dx, following 
the method of Patankar and Spalding) v The viscous stress 
terms ap~ar ing  in the momentum and thermal energy equations 
are not neglected, since, in the present calculation procedure, 
the no-slip boundary condition at the wall is directly used in 
place of the common wall function approach as mentioned 
previously. 

./~_:- . . . . .  b . .  ~ ..4._ co . .E.  

V 

'L 
/ / / / / / / / / / / / / / / / / / ,  

~ z 

Figure 1 Coordinate system and pertinent variables 

Turbu lence  m o d e l  

As a turbulence model for determining the Reynolds stresses 
appearing in the previously given momentum equations, the 
author's anisotropic low-Reynolds-number k-e. turbulence 
model 12'13'~5 is introduced in the present study. With the 
boundary-layer approximations, the transport equations of k 
and e, and each Reynolds stress component are expressed as 
follows 12 : 

U - - + V  + W - - =  v +  
t~x ~y cz Oy akJ ~y] 

v, +5-~ ~ + ~ )  + e - ~  (6) 

U ~ + V ~ + W ~ =  + 
~x ~y 8z 

+ az v + ~ #  az ]  

~ ~2 
+ C,, ~ P - C,2f2 # (7) 

where 

OU ~ O U  OV ~ O W  
P= - u ~  - u w ~ -  v ~ - ~ (8) 

Oy dz dy az 

U~ 2 k + I k  __ C 3 ) F ( ~ U )  2 (~U)2 l 
= -  - v, ( 2 C ~  + 

3 3 ~ Lkay /  ~az/ J 

+ 2 V ~ L ~ /  + ~  az } J (9) 

v ~ ~ k - 2 v ,  ~V 1 k [  /~U~ ~ =3 ~ - 3 v , ;  (c, - 2 c ~ ) ~ )  

+ , c ,  
k a z /  d 

- v + ( I 0 )  
~ k ay # 3 k az # J 

w Z = 3 ~ k - 2 v ' O W  1 ( ~ ) =  ~ - ~ v ,  ~c,-2c,~ 

c,)(e%al + (c, + ~ #  J 

- v  + ( I I )  
~ ~ az / ~ )  J 
dU dU ~ - -  u ]  ~ - v~ , u #  ~ - v~ & ( 1 2 , 1 3 )  

_ ozO ) ~ w = - , . ~ + ~  +C3v, (14) 
~ ~ O y J ~ d z ]  

~,= c . ~ c  = c .L  ~ (~s) 
8 

L = (1 + 3 . 4 5 / ~ ) [ 1  - e x p ( - y + / 7 0 ) ]  (16) 

fz = {1 - (2 /9)exp[-(Rj6)~]}[1  - e x p ( - y + / 5 ) ]  z (17) 

~ = 1.4, a~ = 1.3, C~ = 1.4, C~z = 1.8, C u = 0.09 (18) 

In the previous equations, two model constants C~ and C 3 are 
given as 0.8 and -0 .15 ,  respectively, which are the same values 
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as those proposed previously for boundary-layer flows. ~4'1s It 
should be recognized here that, contrary to the previous 
Reynolds (or algebraic) stress models, the present anisotropic 
model is substantially derived from the standard (isotropic) k-e 
turbulence model, i.e., the standard k-e model is obtained in 
the limit as Ci ~ 0, and is directly applicable up to the wall. 12''~ 
Note that, in deriving Equations 8-14, terms that are quadratic 
in the secondary flow velocity components have been neglected 
since they are small. Note also that the wall coordinate y÷ 
appearing in the modification functions of Equations 16 and 
17 denotes the wall coordinate using the minimum value 
between distances from each wall (for more details see Reference 
12). 

To close the thermal energy equation of Equation 5, we 
approximate, following long-established practice with the k-~ 
model, the turbulent heat flux - ~ by using the concept of the 
turbulent Prandtl number as follows: 

u~ dT/t3y u--ff ~T/dz 
b~ = w~ = (19,20) 

Pr, dU/dy' Pr, dU/Oz 
The turbulent Prandtl number is specified as a constant value 
in order to close the thermal energy equation. 

Solut ion procedure and boundary condit ions 

For a given bulk Reynolds number, Equations 1-4 and 6-18 
are solved numerically in order to predict the developing and 
fully developed velocity field. This solution is then coupled with 
Equations 5, 19, and 20 to predict the local temperature field 
using constant values for the turbulent Prandtl number under 
the assumption of constant properties. Since all the differential 
equations introduced previously are parabolic in the streamwise 
direction, an efficient forward-marching solution procedure can 
be employed. In the present study, a revised version of the 
3-D parabolic finite difference procedure of Patankar and 
Spalding z7 is employed ; in particular, the SIMPLER algorithm 
of Patankar 1 s is substituted for the original SIMPLE algorithm 
in an attempt to improve its rate of convergence. At the inlet 
cross-section of the duct, a uniform distribution of all variables 
is prescribed, i.e., the secondary velocities V and W are set to 
zero, and the turbulent kinetic energy is given based on the 
experimental data. The dissipation rate e is given a small value 
such that the eddy diffusivity vt is several times the molecular 
viscosity v. Starting from these initial conditions, the step- 
by-step integration is undertaken until fully developed flow 
with no profile change in the streamwise direction is attained. 
More detailed information on the solution procedure is given 
elsewhere. 12 

The forward step size is initially 0.01 percent of the channel 
hydraulic diameter D but was enlarged progressively to a 
maximum level of 1 percent of D. At each step several iterations 
are carried out to reduce the residuals to negligible levels. The 
mesh typically comprises 66 × 66 grid points distributed non- 
uniformly over a cross-sectional quadrant: the clustering function 
stretches the mesh in y- and z-directions by using the geometric 
progression, and three to four grid lines are, at least, within 
y+ < 5. These are concentrated in the sublayer and buffer 
regions near the wall. Validation of the numerical procedure 
is achieved through comparisons between the numerical results 
with different grid spacing and forward step sizes. 

Boundary conditions are prescribed at symmetry planes and 
at solid walls. At symmetry planes, the velocity component 
normal to the symmetry plane is equal to zero, while for all 
other quantities the gradients normal to this plane are taken 
as zero. At the solid walls, all of the velocities and Reynolds 
stresses are equal to zero at the wall, and the dissipation rate 
at the wall is set equal t o  v(~2k/~y2)w o r  v(632k/t~7,2)w. 
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To obtain the heat transfer characteristics of the flow, we 
must solve, in addition to the hydrodynamic and turbulence 
properties discussed previously, the energy conservation equa- 
tion. The heat transfer field is solved for the case where the 
average circumferential surface flux is uniform along the duct 
and the circumferential wall temperature is constant. 

R e s u l t s  a n d  d i s c u s s i o n  

Fluid f low f ie ld 

The predicted distributions of the friction coefficient C~ for fully 
developed flow in a square duct are compared with the 
experimental data 3'19-21 in Figure 2. From the figure it can be 
seen that the present predictions agree quite well with the 
experimental results over a wide range of Reynolds numbers. 
It is informative to mention that, in the present model the 
average wall shear stress ~ is calculated directly from the local 
wall shear stress z w = #(~U/Oy),,, as will be discussed below. 
Therefore, the present results seem likely to indicate the 
adequacy of the present model for near-wall turbulence, since 
this affects strongly Cy. 

Figure 3 shows the isovel contours of U/Uc for the fully 
developed flow, along with the experiment. 22 The predicted 
isovei of streamwise mean velocity shows the typical bulging 
toward the corner, which is caused by the secondary motion. 
Close comparison of the predicted distributions with the 
experimental results indicates that the predictions agree quite 
well with the data, although they show a little less bulging of 
the velocity contours toward the corner. 

The predicted contours of turbulent kinetic energy for fully 
developed flow in a square duct, which are normalized by U~, 
are shown in Figure 4 along with the experimental data of 
Fujita et al. 22 The predicted results are in close agreement with 
the measurements, displaying faithfully the distortion of the 
contours toward the corner as a result of movement of high 
momentum fluid near the center outward along the diagonal, 
although they show a little less bulging toward the corner than 
the experimental data. The prediction and the experiment, 
however, share the fact that distortions of turbulent kinetic 
energy contours are more pronounced that those of the isovels 
of streamwise velocity. It should be also valuable to note that 
the present model shows clearly the distribution pattern of 
turbulent kinetic energy in regions close to the corner and the 
wall : the maximum value of turbulent kinetic energy occurs in 
the near-wall region far from the corner. 

Figure 2 
duct 

I 
o 

X 

l 0 Prediction 

0 Hartnett e~ al. 
/k L eutheusser 
[]  Lounder & Ying 

1 ~ Lund 

I I I I I I t I I 

2 10 30 
(× 

Friction coefficient for fully developed f low in a square 
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Predi cti on i 
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Figure 3 Contours of streamwise mean velocity U/U~ at x/D = 84 
(Re = 65,000, experiment; Fujita et al. ~) 

Pred ic t ion  (x 10 -3 ) 
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; : / /v 
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~ 0.411/ [ ( (  

0 0'.2 014 0'.6 018 1.0 
Z/O 

Figure 4 Contours of turbulent kinetic energy k/U~ ( Re = 65,~0, 
experiment; Fujita et al. =) 

Figure 5 shows the predicted local wall shear stress variations 
for fully developed flow in a square duct along with the experi- 
mental data.21.22 Experimental data indicate that the wall shear 
stress first rises from the symmetry plane toward the corner, 
with the peak shear stress about midway between the corner 
and the mid-point of the duct sides, and then falls again near 
the corner, approaching zero at the corner. It was reported by 
Gessner and Emery 6 that all previous models tend to overpredict 
shear stress away from the corners and underpredict values in 
the near-corner region. The present model, however, simulates 
the previously mentioned experimental behavior well. Also, 
from Figure 5 the present results show the tendency of the 
secondary motion to smooth out variations in wall shear stress 
around the perimeter of the duct, which is a little more 
pronounced at the higher Reynolds number. 

A more complete comparison between predictions and avail- 
able experimental data for developing flows has been recently 
presented elsewhere, t2 Also, the details of model performance 
on the local structure of turbulence and other systematic 

discussions of the contours of the important turbulence quantities 
for fully developed flows are reported elsewhere. 23 

Heat  t ransfer f ie ld  

The Nusselt number dependence on Reynolds number for fully 
developed flow and heat transfer in a square duct is shown in 
Figure 6, along with the experimental data. 4'z4'2~ The present 
prediction with the turbulent Prandtl number of 0.9 agrees 
fairly well with the experimental data over a wide range of 
Reynolds number and the prediction with Ph = 1.0 is also 
acceptable. It should be noted here that the computations were 
performed for both constant wall heat flux and constant wall 
temperature conditions, but there are no substantial differences 
between the Nusselt number results for fully developed flow. 
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I~ 
~ 0 . 4  # 
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Figure 5 
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Local wall shear stress variations for fully developed flow 
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Re 
Figure 6 Nusselt number dependence on Reynolds number for 
fully developed flow 

348 Int. J. Heat and Fluid Flow, Vol. 12, No. 4, December 1991 



Predict ion 
1 . 0  . . . .  r - F - i  . . . .  ] . . . . . . .  r . . . . . . . . .  r . . . . . . . . . . . . . . . . . . . . .  : ~ : -  

l 

~ O o  u3 O =3 / i 
~ l  

d ~  d ~ d , i' 

0 . 6  o.~5 . 
~ / "  

O.g5 ~ 

0.2- ~ O.aO~'C 
~ ~ 

o.7o~ ~ 
0 / o.65~ ~ 

o o:4 o'.s o'.a 
Z/~ 

figure 7 Temperature c~nt~um of ( r~ - r ) / (  ~ - ~)  ~t ~/0 = 96 
(Ne = 7~,000, experiment: ~ M ~ u l ~ s  ~) 

1.2 

1.0 

Ioty 1.O 

0 .8  

0 .6  

0 .4  

0 . 2  , 
0 

Figure 8 

i 

Re = 75,000 

. . . .  . . . . . . . . .  

/ 

Re = 75000 

............. Pred ic t ion  

0 Brundrett  & 
Burroughs 

i i I i i i i 

0.5 1.0 
y/o 

Local wall heat flux variations for fully developed flow 

Figure 7 shows the predicted temperature contours of 
(T~, - T)/(T,~ - To) for fully developed flow in a square duct 
with a constant wall temperature with the experimental data. 24 
It can be seen clearly that the isotherms display a similar pattern 
to the isovels shown in Figure 3. This is expected since the 
differential equations and boundary conditions for momentum 
and energy transport have close similarity, although they are 
not identical. A close comparison of predicted isovels and 
isotherms in the near-comer region, however, indicates that the 
secondary flow does not convect thermal energy as effectively 
as primary flow momentum. 

The predicted and measured local wall heat flux variations 
around the perimeter of the square duct are compared in 
Figure 8. The present predictions are in excellent agreement 
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with the experimental data of Brundrett and Burroughs 4: both 
show that the maximum wall heat flux occurs about midway 
between the corner and the mid-point of the sides. A comparison 
between predictions for Re = 75,000 and Re = 250,000 also 
indicates that a slight Reynolds number effect is present; the 
tendency of the secondary motion to smooth out variations in 
wall heat flux around the perimeter of the duct is more 
pronounced at the higher Reynolds number. 

Budget of turbulent kinetic energy transport 

The transport process of turbulent kinetic energy is of great 
importance to understanding the turbulence mechanism, but 
such details would not be readily available from experiments, 
particularly for complex turbulent flows in a square duct. Thus, 
it is of great interest to investigate numerically the details on 
the transport process of turbulent kinetic energy. The turbulent 
kinetic energy equation shown in Equation 6 can be rearranged 
as follows : 

( - v • +  Oy+ oz/ Ty +~:~j 
Convection Diffusion 

0 E , - -  ~ +  + - ~ 0  ( 2 1 )  
+ Oy ~ ]  ~ ]  Production ~ss ipat ion  

Figure 9 shows the predicted contours of the individual t e ~ s  
in Equation 21, which are n o ~ a l i z e d  by U~/D. From the 
figure, it can be first understood that both rates of convection 
and diffusion are one order of magnitude less than those of 
production and dissipation as generally exac ted .  It can be also 
~en that the production rate and the dissipation rate are nearly 
balanced and consequently that local equilibrium ~ t w ~ n  them 
prevails throughout the duct cross region ex~pt  at the core 
region, where tbe production obviously vanishes and the 
dissipation rate is balanced with tbe diffusion rate. The present 
results demonstrate clearly the local equilibrium assumption 
that is commonly adopted in the case of theoretical analysis as 
will ~ discussed in the following section. 

Evaluation of wall function approach 

When the wall function approach is employed in a two- 
transport equation model or in an algebraic stress model, the 
following three conditions for the variation of U, k, and e are 
generally specified along the first mesh line adjacent to a 
boundary wall as wall functions, namely 

U 1 U _  l l n Y U , + c  or - - = - I n ( E y  +) (22) 
t~  K ~ 1/r K 

k _ ~ ey Fp 
- (23,24) 

2 N/-C~ ~ ' 3 l/t /~t KI  

where r ,  C, E, and C~ are prescribed constants with Fp = 1 
and r = r l  for 2-D flows. Up to the present time, most 
numerical investigators still predict 3-D turbulent flow in a 
square duct by applying Equations 22-24 in a given transverse 
plane along the first mesh line (say, y = constant) between the 
comer bisector (z = y) and the wall bisector (z = a) at each 
streamwise location. Recently, however, Gessner 26 has re- 
ported on experimental measurements by Eppich that, although 
Equation 22 fits fairly well by the near-wall data, k/u2~ and 
ey/u~ vary in the near-wall and the near-comer regions, so that 
Equations 23 and 24 are not satisfied when F o and r l  are 
prescribed as constants. Demuren and Rodi 11 have also asserted 
that, for a wall normal to z, the boundary conditions for k and 
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~ are given with x = x, and 

(~"~2/(~'~ ~ 
F~= ~ + k a y /  / \ a z /  

Note that for a wall normal to y, z and y must be exchanged. 
Since ~ takes a value of 2 at the corner bisector and uaity at 
the wall bisector, respectiwly, Equations 23 and 24 imply that 
the ratios k/u~ and ~y/u~ increased the corner. 

Figure l0 shows the predicted innerqaw velocity profiles at 
four positions in the z direction, which are normalized by the 
local wall friction velocities at each position. It is generally 
known from experimental evidence that the velocity profiles 
can be described by the usual inner logarithmic law of the wall 
of Equation 22 devdoped for 2-D flows, with a little scatter in 

the involved constants, but not universal defect laws are found 
for the outer region. The present predictions confirm clearly the 
experimental evidence, but indicate that the usual inner loga- 
rithmic law of the wall is not valid over the somewhat wide 
range of the corner region. 

The predicted variations of k and ~. at two positions in the 
y direction are shown in Figures 11 and 12, respectively, along 
with the experimental data presented by Gessner 26 and Demuren 
and Rodi's relations using Equations 23 and 24 with Fp given 
by Equation 25. Note that the results shown in Figures 11 and 
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12 denote the variations of Fp and Folxl ,  respectively. It is 
first evident that the commonly adopted boundary conditions 
of Equations 23 with Fp = 1, implying that the production is 
equal to twice the dissipation at the comer, are not in accord 
with reality. The predicted variations of Fo and F~,/xl show a 
similar trend to the relation of Equation 25 with x = xl,  which 
is asserted by Demuren and Rodi,~ ~ although slight quantitative 
discrepancies exist in the corner region. In contrast, the 
measurements reported by Gessner, 26 however, show the op- 
posite trend: the ratio of k to u~ 2 (or F~) decreases as the corner 
is approached. This trend is apparently in conflict with the 
notion of local equilibrium arguments leading to Equation 25, 
since F~ of Equation 25 can be derived from the assumptions 
of both logarithmic law of the wall and local equilibrium in 
consideration of the fact that the generation of turbulent kinetic 
energy P given by Equation 8 is influenced by the presence of 
both walls in the corner region, while u, and y relate only to 
the wall nearest to the point in question. Hence, Fp ensures 
that both the production and the dissipation of turbulent kinetic 
energy are balanced even in the near-corner region. This fact 
is confirmed by the present result as shown in Figure 9. 
Demuren and Rodi ~ reported that this trend could only be 
explained by a fairly strong convective transport of k by the 
secondary motion from the core region with lower k into the 
corner. The present prediction, however, does not support this 
assertion as shown in Figure 9. 

The large discrepancy near the corner between the experi- 
ment 26 and Demuren and Rodi's relations (and/or  the present 
predictions) may be mainly traced to the following facts: in 
their development of wall functions for k and e of Equations 
23 and 24, Demuren and Rodi started by assuming that 
-~ /u2~  = 1 in the region bounding the wall y = 0, which is 
also commented by one of the reviewers. The present model 
also predicts that - u v / u  2, has approximately unit value in the 
whole region bounding the wall y = 0. In contrast, the experi- 
mental data show that - ~ / u ~  decreases from unity on the 
wall bisector to a value of approximately 0.5 on the corner 
bisector (e.g., see Figure 12 in Reference 27). This fact can be 
also indirectly found elsewhere (e.g., Figure 9 in Reference 12): 
the present model predicts fairly well the local primary shear 
stress - u ~  along the wall bisector, but overpredicts it along 
the corner bisector, although its absolute value along the corner 
bisector is much lower than that along the wall bisector in 
the region bounding the wall y = 0. Note that there is still 
little definite explanation of this experimental evidence. Thus, 
although more extensive theoretical and experimental investi- 
gations should be required to clarify this point, it might be 
understood that turbulent flows in the immediate vicinity of a 
corner still cannot be predicted with good accuracy even with 
the aid of the present anisotropic k-e model. 

Figure 13 shows the predicted inner-law temperature profiles 
at four positions in the z-direction. It is evident from Figure 13 
that the inner-law temperature profiles display much the same 
pattern as the inner-law velocity profiles shown in Figure 10: 
the present predictions clearly support the experimental evidence, 
but the usual inner logarithmic law of the wall is not valid over 
the fairly wide range of the corner region. 

Conclusion 

Using the anisotropic low-Reynolds-number k-e turbulence 
model, 3-D turbulent fluid flow and heat transfer in a square 
duct are numerically predicted. In contrast to previous models, 
the present model has used directly the no-slip boundary 
condition at the wall in place of the common wall function 
approach. In addition, the resulting set of equations are 
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simplified only by the boundary-layer assumptions. Both tem- 
perature and velocity field predictions for fully developed flow 
display the transport effects of secondary flow and are in general 
agreement with the experimental evidence. Local wall shear 
stress and wall heat flux distributions exhibit excellent agree- 
ment with observed peaking behavior between the duct midplane 
and corner region. The predicted averaged friction factor and 
Nusselt number behavior are found to be in good agreement 
with the data. 

In addition, the budget of turbulent kinetic energy equation 
and the systematic evaluation of existing wall function forms 
are presented in this paper. The present result demonstrates 
clearly the local equilibrium assumption commonly adopted in 
the case of theoretical analysis. It is also found that the 
commonly adopted wall function forms, which are valid for 
2oD flows, are inadequate for 3-D turbulent flows. 
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